

"highly central" collisions

C. Andrei and A. Herghelegiu

• Motivation

• *p+p at 900 GeV*

- PHYTHIA and PHOJET
- Primary and reconstructed p_t distributions and $\langle p_t \rangle$
- $\langle p_t \rangle$ vs. mass as a function of multiplicity and directivity
- soft hard interaction selection

• ALICE PID performance

• Outlook

Tuesday, June 8, 2010

Cristian Andrei, June 08, 2010

Transverse Flow

e č

STAR preliminary

atios

101

10

Particle

 π, K, p

 K^*

 $\Lambda, \bar{\Lambda}$

 $\Xi^-, \bar{\Xi}^+$

 $\Omega, \bar{\Omega}$

東京市

 T_{kin} (MeV)

 89 ± 10

 75 ± 35

 115 ± 20

 161 ± 20

 179 ± 60

A(1520)/A K'JK⁻ A(1232)/p

ΩN ΩN

Fitte

 $\langle \beta \rangle (c)$

 0.59 ± 0.05

 0.62 ± 0.05

 0.54 ± 0.05

 0.46 ± 0.10

 0.45 ± 0.10

•

0403014nucl-ex/

E.Schnedermann, J.Sollfrank, U.W.Heinz, Phys.Rev. C48(1993)2462

Transverse Flow from <*p*^{*t*} > *vs. mass analysis*

M. Petrovici, A. Pop arXiv: 0904.3666

Transverse Flow from <*p*^{*t*} > *vs. mass analysis*

Transverse Flow from <pt vs. mass analysis

Boltzmann-Gibbs Blast-Wave

$$< p_t > = rac{\int_0^\infty p_t^2 f(p_t) dp_t}{\int_0^\infty p_t f(p_t) dp_t}$$

$$f(p_t) \sim \int\limits_{0}^{R} r dr m_t I_0\left(rac{p_t sinh
ho}{T}
ight) K_1\left(rac{m_t cosh
ho}{T}
ight)$$

$$ho = tanh^{-1}eta_r ~~eta_r(r) = eta_s \left(rac{r}{R}
ight)^n ~~m_t = \sqrt{m^2 + p_t^2}$$

E.Schnedermann, J.Sollfrank, U.W.Heinz, Phys.Rev. C48(1993)2462

Boltzmann-Gibbs Blast-Wave

M. Petrovici, A. Pop arXiv: 0904.3666

Tsallis Blast-Wave

Tsallis Blast Wave:

$$f(p_t) = m_t \int_{-Y}^{Y} \cosh(y) dy \int_{-\pi}^{\pi} d\phi \int_{0}^{R} r dr (1 + \frac{q-1}{T} (m_t \cosh(y) \cosh(\rho) - p_t \sinh(\rho) \cos(\phi)))^{-1/(q-1)}$$

$$< p_t >= rac{\int_0^\infty p_t^2 f(p_t) dp_t}{\int_0^\infty p_t f(p_t) dp_t}$$

A. Lavagno, Phys.Lett. A301(2002)13 Z. Tang et al, arXiv:0812.1609 nucl-ex

Tsallis Blast-Wave

M. Petrovici, A. Pop arXiv: 0904.3666

$$< p_t >= rac{\int_0^\infty p_t^2 f(p_t) dp_t}{\int_0^\infty p_t f(p_t) dp_t}$$

$$f(p_t) \sim \int\limits_{0}^{R} r dr m_t I_0\left(rac{p_t sinh
ho}{T}
ight) K_1\left(rac{m_t cosh
ho}{T}
ight)$$

M.Petrovici and Amalia Pop

- AIP Conference Proceedings 972(2008)98
- will be published

π [±] , K [±] ,	, K*, K _s ⁰ ,	p , Λ, Λ̄,	Ξ ^{±,} , Ω-,	d, <u>d</u>, J /ψ	π [±] , K	^{t±} , K*, p,	p , d, d	Λ, Ā,	Ξ ^{±,} , Ω ⁻ , J/1
System	$\mathbf{p} + \mathbf{p}$	$\mathbf{p} + \mathbf{p}$	Au + Au	Au + Au		Au + Au	Au + Au		Au + Au
Model	BGBW	TBW	BGBW	TBW		BGBW	TBW		TBW
T [MeV]	111.6 ± 23.8	$78.86{\pm}10.13$	$109.8 {\pm} 16.5$	86.8 ± 1.54	T [MeV]	$98.7{\pm}19.5$	$79.05 {\pm} 0.04$	T [MeV]	$198.0{\pm}7.6$
β	$0.39{\pm}0.06$	$0.027 {\pm} 0.10$	$0.50{\pm}0.04$	$0.48 {\pm} 0.04$	β	$0.54{\pm}0.04$	$0.53 {\pm} 0.0005$	β	$0.32{\pm}0.012$
a	1.0	1.0874	1.0	1.0247	q	1.0	1.0175	q	1.0247

M. Petrovici, A. Pop arXiv: 0904.3666

π^{\pm} , K [±] , K [*] , K ⁰ _s , \overline{p} , Λ , $\overline{\Lambda}$, Ξ^{\pm} , Ω^{-} , d, \overline{d} , J/ ψ				
System	$\mathbf{p} + \mathbf{p}$	p + p	Au + Au	Au + Au
Model	BGBW	TBW	BGBW	TBW
T [MeV]	111.6 ± 23.8	$78.86{\pm}10.13$	109.8 ± 16.5	86.8 ± 1.54
β	$0.39{\pm}0.06$	$0.027 {\pm} 0.10$	$0.50{\pm}0.04$	$0.48 {\pm} 0.04$
q	1.0	1.0874	1.0	1.0247

M. Petrovici, A. Pop arXiv: 0904.3666

π^{\pm} , K [±] , K [*] , K ⁰ _s , \overline{p} , Λ , $\overline{\Lambda}$, Ξ^{\pm} , Ω^{-} , d, \overline{d} , J/ ψ					π^{\pm} , K [±] , K [*] , p, \overline{p} , d, \overline{d}			[<u>Λ</u> , <u>Λ</u> , Ξ ^{±,} , Ω ⁻ ,		
System	$\mathbf{p} + \mathbf{p}$	$\mathbf{p} + \mathbf{p}$	Au + Au	Au + Au	-	Au + Au	Au + Au			Au + Au	
Model	BGBW	TBW	BGBW	TBW		BGBW	TBW			TBW	
T [MeV]	$111.6 {\pm} 23.8$	$78.86{\pm}10.13$	$109.8 {\pm} 16.5$	86.8 ± 1.54	T [MeV]	$98.7{\pm}19.5$	$79.05{\pm}0.04$		T [MeV]	198.0±7.0	
β	$0.39{\pm}0.06$	$0.027 {\pm} 0.10$	$0.50{\pm}0.04$	$0.48 {\pm} 0.04$	β	$0.54{\pm}0.04$	$0.53{\pm}0.0005$		β	$0.32{\pm}0.01$	
q	1.0	1.0874	1.0	1.0247	q	1.0	1.0175		q	1.0247	

M. Petrovici, A. Pop arXiv: 0904.3666

SPS and Tevatron Results

Charged particle multiplicity scaling

Analysis details

Simulations - PYTHIA Tune6T - LHC10a12, runs: 104825, 104800, 104799, 104793, 104792, 104316, 104157 -> used to determine corrections - PYTHIA Tune6T - LHC10a12, run 104824 - PHOJET - LHC10a14, run 104792

AliPhysicsSelection

Track cuts: - $0.2 < p_T < 3.2 \text{ GeV}$

- -|y| < 0.5
- min TPC clusters = 80
- χ^2 /cluster = 4.0
- no kink daughters
- SetRequireTPCRefit & SetRequireITSRefit
- $-|d0| < 7*(0.0050+0.0060/p_T^{0.9}) \text{ cm}$

PID – the present results are based on what we called "manual PID"

corrected spectra - PYTHIA

Contaminations spectra - PYTHIA

PYTHIA corrected with PYTHIA-EFF

PHOJET corrected with PYTHIA-EFF

Extrapolation procedures

Boltzmann-Gibbs Blast Wave = Boltzmann

$$f(p_t) \sim \int\limits_{0}^{R} r dr m_t I_0\left(rac{p_t sinh
ho}{T}
ight) K_1\left(rac{m_t cosh
ho}{T}
ight)$$

Boltzmann-Gibbs Blast Wave (explicit rapidity integral) = Boltzmann Rap

$$f(p_t) \sim \int_{-Y}^{Y} dy \int_{0}^{R} m_t r \, dr \cosh(y) \exp\left(\frac{-m_t \cosh(\rho) \cosh(y)}{T}\right) I_0\left(\frac{p_t \sinh(\rho)}{T}\right)$$

Tsallis Blast Wave = Tsallis

$$f(p_t) = m_t \int_{-Y}^{Y} \cosh(y) dy \int_{-\pi}^{\pi} d\phi \int_{0}^{R} r dr (1 + \frac{q-1}{T} (m_t \cosh(y) \cosh(\rho) - p_t \sinh(\rho) \cos(\phi)))^{-1/(q-1)}$$

where:

$$m_t = \sqrt{m^2 + p_t^2} \qquad eta_r(r) = eta_s \left(rac{r}{R}
ight)^n \qquad
ho = tanh^{-1}eta_r$$

PYTHIA - extrapolations compared

Efficiency correction and extrapolation |y| < 0.2

PYTHIA (corrected with **PYTHIA** – eff)

PHOJET (corrected with PYTHIA – eff)

 $< p_T > - MC$ |y| < 0.2, Boltzmann Rap

$$\langle p_{\perp}(m, T) \rangle_{\{\text{Fermi}\}} = \sqrt{\frac{\pi m T}{2}} \frac{\sum\limits_{n=1}^{\infty} (\mp 1)^{n+1} K_{\frac{5}{2}}(n(m/T))}{\sum\limits_{n=1}^{\infty} (\mp 1)^{n+1} K_{2}(n(m/T))}$$
 T = 170 MeV

How to select azimuthal isotropic events? PYTHIA

Hard and Soft event selection

-CDF inspired method:

If a particle with p_T >0.7GeV/c and one with p_T >0.4GeV/c are separated in (η , ϕ) by a distance smaller than R=0.7, the event is labeled as "hard"

ALICE simulation - 10 TeV

Multiplicity dependence of the Directivity distribution Hard and Soft events

<pt> vs mass for different cuts in multiplicity and directivity PYTHIA & PHOJET

PYTHIA

PHOJET

ALICE PID performance

Next steps

- Combined PID MC and Data (0.9 and & 7 TeV)
- the influence of the resonance decay on the pt spectra
- MC based on EPOS
- Detailed studies on selection procedures for soft and hard processes
- unstable particles (hyperons)

• Preparing the stage for Pb-Pb collisions expected for Fall 2010